Back

Group van Rooij

The heart can regenerate, but it’s not enough to reverse or fix damage caused by a heart attack or limited blood flow. We’re trying to figure out how to help a patient’s own heart muscle cells (cardiomyocytes) improve their own ability to repair the injured area. In addition, we’re studying the underlying genetics of heart disease (cardiovascular disease) in order to develop new therapies to correct mutations or stop the progression of disease. 

Heart disease: regeneration and repair

We focus on two primary approaches to understanding heart disease: stimulation of endogenous heart muscle repair (helping a patient’s own heart repair itself), and studying the genetics underlying heart disease.

Kick-starting more heart muscle cells into action

Ischemic heart disease is lack of blood flow to the heart, and often leads to a heart attack, which results in the death of heart muscle cells (cardiomyocytes). Interestingly, there is a very small number of cardiomyocytes that start to replicate and make new healthy cardiomyocytes, but unfortunately, it’s not enough for the heart to fully recover.

We’re searching for factors and genes that can stimulate a patient’s own heart to better repair itself. Using novel techniques including Tomo-Seq (genome-wide sequencing that includes spatial relationships of genes) and single cell sequencing, we can look at genes that regulate cardiomyocyte damage and study the function of these genes. So far, we’ve identified a few transcription factors that that may be able to trigger more cardiomyocytes to also replicate in response to injury or disease. 

Heart disease in a dish

Another aspect of our work investigates the molecular pathways of genetic and inherited heart disease. For obvious ethical reasons, it’s difficult to get heart muscle cells from human patients, so we’re using an alternative cell source called induced pluripotent stem cells (iPS cells) to model genetic heart diseases. iPS cell technology can reprogram an adult cell back into an immature state. We can then direct these cells to become any type of cell we want. For example, we can take a skin biopsy from a patient with a genetic heart disease and reprogram the cells to become cardiomyocytes. What’s unique about these cardiomyocytes is that they carry the exact genetic flaws of the patient. We can use these cells to generate an in-depth view of the patient’s disease and hopefully develop new therapies that either correct the mutation or slow or halt disease progression.

Research with a strong translational push         

Although I’m a basic science researcher at heart, I’ve always focused on being able to use research to improve human health. For a number of years, I worked in a very different sector – I’m the scientific co-founder of miRagen Therapeutics, a company developing microRNA technology for treatments (microRNAs are important for regulating gene expression); several programs are now in clinical trials. I’ve moved back to academia, and the infrastructure within the Circulatory Health program greatly supports our vision of translating our scientific findings into patient benefit. 

Research team uitklapper, klik om te openen

Principal Investigator

Eva van Rooij

PhD Students:

Arwa Kohela

Brian van Kampen

Marta Vigil

Charlotte Demkes

Bas Molenaar

Job Eding

Technicians:

Hester de Ruijter

Lineke Kooiman

Jantine Monshouwer-Kloots

Danielle Versteeg

Post docs:

Kees Jan Boogerd

Marjolein Droog

Monika Gladka-de Vries

Anna Katrine Johansen

Grégory Lacraz

Jenny (Hoyee)Tsui

More information uitklapper, klik om te openen

Contact uitklapper, klik om te openen

Eva van Rooij, PhD

Thank you for your review!

Has this information helped you?
Please tell us why, so that we can improve our website.

Working at UMC Utrecht

Contact

Emergency?

  • Call 112 or your general practitioner
  • Emergency?

Directions

Get in touch

  • 088 75 555 55

Appointments

Practical

umcutrecht.nl uses cookies

This website uses cookies This website displays videos from, among others, YouTube. Such parties place cookies (third-party cookies). If you do not want these cookies, you can indicate that here. We also place cookies ourselves to improve our site.

Read more about the cookie policy

Agree No, rather not