Back

mr. L.M. (Kenneth) Asselt

mr. L.M. (Kenneth) Asselt

Associate Professor
mr. L.M. (Kenneth) Asselt
  • Image Sciences Institute

Research Programs

Strategic Program Cancer

Biography

Biography

Dr. Kenneth Gilhuijs is associate professor at the University Medical Center Utrecht (UMC). He obtained his Ph.D. cum laude in Medical Physics from the University of Amsterdam.

He heads a research group on translational imaging in oncology with emphasis on MRI and artificial intelligence (AI). His team includes Ph.D. students and post-docs on the interface between diagnostic imaging, pathology, medical oncology, and surgery. In 2010 he transferred from the Netherlands Cancer Institute to the University Medical Center Utrecht.

His research interests include machine learning, radiomics, deep learning, and computerized decision support systems for patient-tailored cancer treatment on the basis of automated prognostication and response monitoring.

Kenneth Gilhuijs is coordinator of the master’s course medical image processing at UMC, is academic editor for Diagnostics, and serves on several scientific advisory boards.

Research Output (164)

Population-based estimates of overtreatment with adjuvant systemic therapy in early breast cancer patients with data from the Netherlands and the USA

Ragusi M.A.A., van der Velden B.H.M., van Maaren M.C., van der Wall E., van Gils C. H., Pijnappel R. M., Gilhuijs K.G.A., Elias S.G. 2022, In: Breast Cancer Research and Treatment. 193 , p. 161-173 13 p.

Multi-modal Volumetric Concept Activation to Explain Detection and Classification of Metastatic Prostate Cancer on PSMA-PET/CT

Kraaijveld R. C.J., Philippens M. E.P., Eppinga W. S.C., Jürgenliemk-Schulz I. M., Gilhuijs K. G.A., Kroon P. S., van der Velden B. H.M. 2022, p. 82-92 11 p.

Contralateral parenchymal enhancement on MRI is associated with tumor proteasome pathway gene expression and overall survival of early ER+/HER2-breast cancer patients

Ragusi Max A A, Bismeijer Tycho, van der Velden Bas H M, Loo Claudette E, Canisius Sander, Wesseling Jelle, Wessels Lodewyk F A, Elias Sjoerd G, Gilhuijs Kenneth G A 2 Nov 2021, In: The Breast. 60 , p. 230-237 8 p.

Deep Learning for Automated Triaging of 4581 Breast MRI Examinations from the DENSE Trial

Verburg Erik, van Gils Carla H, van der Velden Bas H M, Bakker Marije F, Pijnappel Ruud M, Veldhuis Wouter B, Gilhuijs Kenneth G A 5 Oct 2021, In: Radiology. 302 , p. 29-36 8 p.

Toward Computer-Assisted Triaging of Magnetic Resonance Imaging-Guided Biopsy in Preoperative Breast Cancer Patients

Wang Hui, van der Velden Bas H M, Ragusi Max A A, Veldhuis Wouter B, Viergever Max A, Verburg Erik, Gilhuijs Kenneth G A 1 Jul 2021, In: Investigative Radiology. 56 , p. 442-449 8 p.

Prognostic value of breast MRI characteristics before and during neoadjuvant endocrine therapy in patients with ER+/HER2- breast cancer

Ragusi Max Aa, Winter-Warnars Gonneke Ao, Wesseling Jelle, Linn Sabine C., Beets-Tan Regina G., van der Velden Bas Hm, Elias Sjoerd G., Gilhuijs Kenneth Ga, Loo Claudette E. 1 Jul 2021, In: The British journal of radiology. 94 , p. 1-10 10 p.

Volumetric breast density estimation on MRI using explainable deep learning regression

van der Velden Bas H M, Janse Markus H A, Ragusi Max A A, Loo Claudette E, Gilhuijs Kenneth G A 22 Oct 2020, In: Scientific Reports. 10

Correcting time-intensity curves in dynamic contrast-enhanced breast MRI for inhomogeneous excitation fields at 7T

van Rijssel Michael J., Pluim Josien P.W., Chan Hui Shan M., van den Wildenberg Lieke, Schmitz Alexander M.Th, Luijten Peter R., Gilhuijs Kenneth G.A., Klomp Dennis W.J. 1 Aug 2020, In: Magnetic Resonance in Medicine. 84 , p. 1000-1010 11 p.

Contralateral parenchymal enhancement on breast MRI before and during neoadjuvant endocrine therapy in relation to the preoperative endocrine prognostic index

Ragusi Max A A, Loo Claudette E, van der Velden Bas H M, Wesseling Jelle, Linn Sabine C, Beets-Tan Regina G, Elias Sjoerd G, Gilhuijs Kenneth G A 20 Jul 2020, In: European Radiology. 30 , p. 6740-6748 9 p.

Radiogenomic Analysis of Breast Cancer by Linking MRI Phenotypes with Tumor Gene Expression

Bismeijer Tycho, van der Velden Bas H M, Canisius Sander, Lips Esther H, Loo Claudette E, Viergever Max A, Wesseling Jelle, Gilhuijs Kenneth G A, Wessels Lodewyk F A 26 May 2020, In: Radiology. 296 , p. 277-287 11 p.

All research output

Thank you for your review!

Has this information helped you?

Please tell us why, so that we can improve our website.

Working at UMC Utrecht

Contact

Emergency?

Directions

Appointments

Practical

umcutrecht.nl uses cookies

This website uses cookies This website displays videos from, among others, YouTube. Such parties place cookies (third-party cookies). If you do not want these cookies, you can indicate that here. We also place cookies ourselves to improve our site.

Read more about the cookie policy

Agree No, rather not